
Toward Disposable Domain-Specific Aspect Languages ∗

Arik Hadas1 David H. Lorenz1,2 †

1Open University, Raanana 43107, Israel
2Technion–Israel Institute of Technology

Haifa 32000, Israel

arik.hadas@openu.ac.il, dhlorenz@cs.technion.ac.il

Abstract

Consider the task of auditing an application whose main function-
ality is to execute commands received from clients. One could audit
command executions with AspectJ. Alternatively, one could design,
implement, and use a domain-specific aspect language for auditing,
and then throw the language away. In this paper we argue that such
disposable aspect languages are useful and that developing them
may overall be as cost-effective as using general-purpose aspect
languages.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—Domain-specific architectures

General Terms Language, Design.

Keywords Aspect-oriented programming (AOP), Domain-specific
aspect language (DSAL), General-purpose aspect language (GPAL).

1. Introduction

Aspect-oriented languages can be classified into two categories:
general-purpose aspect languages (GPALs) and domain-specific
aspect languages (DSALs). GPALs are languages that provide as
general as possible constructs in order to express crosscutting con-
cerns across problem domains. The most prominent example of
a GPAL is AspectJ, which has a large ecosystem and supportive
tools. In contrast, DSALs limit the generality of their constructs
in order to provide better separation of crosscutting concerns for
a particular problem domain. A survey of DSALs can be found in
Fabry et al. [1].

The viability of the DSALs category seems to have an “upper
bound” in terms of generality and a “lower bound” in terms of
specificity. On the one hand, DSALs that are too general are usually
avoided because their applicability overlaps existing GPALs. On
the other hand, DSALs that are too specific are avoided too because,
unless they are reusable across applications, they may not justify
their development cost.

∗ This research was supported in part by the Israel Science Foundation (ISF)

under grant No. 1440/14.
† Work done in part while visiting the Faculty of Computer Science,
Technion—Israel Institute of Technology.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax

+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

Modularity ’16, March 14–18, 2016, Málaga, Spain

Copyright c⃝ 2016 ACM 978-1-4503-4033-5/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2892664.2892676

In this work we look at a special kind of ad-hock crosscutting
concerns that in principle could be expressed in a GPAL but their
implementation typically results in “aspect spaghetti code,” i.e.,
the aspect itself suffers from code scattering and tangling. In or-
der to handle such concerns we identify a subcategory of DSALs
called disposable aspect languages (DISPALs). DISPALs are atyp-
ical DSALs, challenging both boundaries of the DSAL spectrum.
On the one hand, DISPALs can be translated into GPALs, poten-
tially rendering them redundant. On the other hand, DISPALs are
extremely specific with a slim expectation for reuse.

Nevertheless, DISPALs present new possibilities. The fact that
reuse is not an objective makes DISPALs easier to design than
DSALs. The fact that their constructs can be translated into con-
structs in some GPAL makes them also simpler to implement,
sometimes to the extent that they can be built ad-hock and on-
demand for a particular application and then disposed of. Con-
sidering DSALs as disposable promotes an agile-like Language
Oriented Modularity (LOM) [6] process, that may fundamentally
change the way we use aspect languages in software projects.

2. Example

Consider a Java application whose main functionality is to receive
commands from clients and execute them (the commands, not the
clients). A natural design choice for such an application is to use
the COMMAND design pattern [2]. Listing 1 shows the Command

class, root of all commands. The method execute is responsible
for the core logic of the command. The method end is called
when asynchronous operations that were initiated in the execute

method are completed. The method isSucceeded returns true if the
command succeeded and false otherwise.

A concrete command called CopyCommand for copying a re-
source asynchronously is shown in Listing 2. It overrides the three
abstract methods defined in Command. The execute method locks
the resource on the source so that it will not be deleted while it
is being copied, and initiates the copy operation. The end method
unlocks the resource on the source, and if the copy operation suc-
ceeds, it adds the resource on the destination to the system. The
isSucceeded method returns true when the copy operation com-
pletes successfully and false when any of the operations in the
execute method or the copy operation fails.

2.1 Basic Auditing

Now, suppose we are initially asked to audit commands in two
places as they are being executed:

• After the execution of the execute method, indicating whether
the asynchronous operations have started or the command has
failed.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
ACM. 978-1-4503-4033-5/16/03...
http://dx.doi.org/10.1145/2892664.2892676

83

Listing 1: Command class

public abstract class Command<T extends Parameters> {
protected T params;
Command(T params) { this.params = params; }
abstract void execute();
abstract void end();
abstract boolean isSucceeded();
public T getParameters() { return params; }

}

Listing 2: Copy resource command

class CopyCommand extends Command<CopyParameters> {
public CopyCommand(CopyParameters p) { super(p); }
@Override

void execute() {
lock(params.getResource(), params.getSource());
copy(params.getResource(), params.getSource(), params.

getDestination());
}
@Override

void end() {
unlock(params.getResource(), params.getSource());
if (isSucceeded())
add(params.getResource(), params.getDestination());

}
@Override

boolean isSucceeded() { ... }
}

• After the execution of the end method, indicating whether the
asynchronous operations succeeded or failed.

2.2 Enhanced Auditing

As the application evolves additional requests for auditing may be
made:

• Ability to audit commands that can be either synchronous or
asynchronous.

• Ability to translate audit messages to other languages.

• Ability to include specific information in audit messages. For
example, for CopyCommand including the name of the copied
resource.

• Ability to customize audit messages according to the com-
mand’s parameters. For example, indicating for CopyCommand

whether or not the resource was encrypted before it was copied.

3. Disposable DSAL vs. AspectJ

One can implement the auditing in AspectJ. Initially, the aspect is
fairly simple. It defines two pieces of advice. The first advice is ex-
ecuted after the execute method, fetches the command’s type, and
produces a message according to the return value of isSucceeded
. The second advice is executed after the end method, fetches the
command’s type and, again, produces a message according to the
return value of isSucceeded.

However, with AspectJ the code within the aspect becomes
more and more tangled as more requirements are added. Listing 3
sketches an implementation in AspectJ for enhanced auditing. The
code becomes cumbersome because more logic is required in order
to figure out which message should be produced in each phase. The
aspect needs to check whether the command is asynchronous or not
(and optionally check its parameters) in order to determine the rel-
evant message. It is also more complicated to produce the message,

Listing 3: Enhanced Auditing in AspectJ

public privileged aspect EnhancedAudit {
after(Command c): execution(∗ execute()) && this(c) {
if (c instanceof CopyCommand) {
CopyCommand copyCmd = (CopyCommand) c;
CopyParameters params = copyCmd.getParameters();
if (!copyCmd.isSucceeded()) {
audit(resolve(AuditMessages.COPY_FAILED, params.

getResource()));
} else {
if (copyCmd.isAsync()) {
String msg = resolve(copyCmd.encrypt ?
AuditMessages.COPY_ENCRYPT_STARTED : AuditMessages.

COPY_STARTED,
params.getResource(), params.getSource(), params.

getDestination());
audit(msg);

} else {
audit(resolve(AuditMessages.COPY_SUCCEEDED,
params.getResource(), params.getSource(), params.

getDestination()));
}}}}
after(Command c): execution(∗ end()) && this(c) {
if (c instanceof CopyCommand) {
CopyCommand copyCmd = (CopyCommand) c;
CopyParameters params = copyCmd.getParameters();
if (!copyCmd.isSucceeded()) {
audit(resolve(AuditMessages.COPY_FAILED, params.

getResource()));
} else {
audit(resolve(AuditMessages.COPY_SUCCEEDED,
params.getResource(), params.getSource(), params.

getDestination()));
}}}

...
}

since we need to use translationable enumeration that represents
the messages, and to retrieve information from the command that
should be included in the message.

Alternatively, one can design an ad-hock DISPAL for the re-
quired auditing. Listing 4 depicts a grammar definition for such a
DISPAL written in the Xtext language workbench. In this DISPAL
the audit messages for each command are declared by a section that
begins with the name of the command. The messages that should
be produced in different conditions are defined using a case state-
ment. Listing 5 depicts the implementation of enhanced auditing
for CopyCommand in the produced DISPAL.

The semantics for the DISPAL is provided via transformation
of the auditing language into AspectJ. This allows us to leverage
the weaving capabilities of the AspectJ compiler instead of devel-
oping either a custom standalone compiler or a weaver plugin, thus
avoiding relatively complex low-level programming.

4. Discussion

Obviously, the need to define and implement a new language im-
poses additional cost for using the DISPAL. However, the simplic-
ity of a DISPAL reduces the cost of implementing the language and
programming in it. In this section we discuss when one might use
DISPALs rather than GPALs or ordinary DSALs.

On the one hand, there are crosscutting concerns that do not
rely on the structure or business-logic entities in a particular ap-
plication. These crosscutting concerns are likely to appear in vari-
ous applications and therefore their solution can be reused across
applications. When the solution is easy to express with a general-

84

Listing 4: DAL grammar definition in Xtext

Model: commands+=Command(’,’ commands+=Command)∗;
Command:
type=[types::JvmDeclaredType|QualifiedName] ’:’

(cases+=Case(’,’ cases+=Case)∗)?
’;’

;
Case:

’case’ actionState=ActionState (’&’ (fields+=[types::
JvmField]))∗

’log’ ’(’ msg=[types::JvmEnumerationLiteral] (’,’ ops+=[types::
JvmOperation])∗ ’)’

;
enum ActionState: started|success|failure;
QualifiedName: ID ("." ID)∗;

Listing 5: Auditing aspect in the DAL

CopyCommand:
case failure

log(COPY_FAILED, getResource),
case started & encrypt

log(COPY_ENCRYPT_STARTED, getResource, getSource,
getDestination),

case started
log(COPY_STARTED, getResource, getSource,

getDestination),
case success

log(COPY_SUCCEEDED, getResource, getSource,
getDestination)

;

purpose language, GPAL would be the best choice. For example,
concerns like measuring the execution time of selected methods,
or executing selected methods in a transaction, could be solved by
GPALs, since generally one could find a third-party aspect that does
the job or implement an aspect that is not likely to change as the
application evolves. When the solution is difficult to express with
a general-purpose language, it might be better to develop a DSAL
for it. Hopefully, the reusability of the language across applications
would justify the cost of developing that DSAL. An example of this
is synchronization of method executions, which is easier to express
using a DSAL like COOL.

On the other hand, there are crosscutting concerns that are
highly related to the structure and business logic entities in a par-
ticular application. These concerns are likely to get more and more
complicated as the application evolves, and are less likely to be
reused across applications. An example of such a concern is the au-
diting concern described in Section 2. The requirements are highly
affected by the structure of the commands and their use. As we
have demonstrated, these requirements are likely to get more com-
plicated as the application evolves. The benefit of using DISPALs
for such concerns is that they provide a simpler and more restric-
tive grammar for the given problem and therefore are easier to pro-
gram with compared to GPALs. In addition, the cost of developing
a DISPAL is less than that of a DSAL, since DISPALs are more
specific and thus easier to define, implement, and maintain for the
particular problem.

One may argue that the development and maintenance of a
transformation from a DISPAL to a GPAL is as hard as (and even

harder than) programming in that GPAL. Indeed, in order to define
the transformation of the DISPAL to a GPAL we used the following
method. First, we wrote an aspect in the GPAL that solves a special
case of the crosscutting concern in question. Then, we generalized
that aspect by defining a transformation from the DISPAL to that
GPAL for the general case. Thus, this argument may be true for
the language design effort. However, it is not necessarily true for
the overall development cost, taking into account that in a typical
project DISPAL design is done by few developers, while all other
developers enjoy the benefit of programming in these DISPALs.

The cost of developing DISPALs can still seem to be too high.
Our experience with the oVirt project, however, is that the devel-
opment of DISPALs was relatively simple. First, the fact that the
language is tailored to a specific problem means that a limited num-
ber of constructs needs to be defined. Second, it means that we can
rely on the structure of the application in question, which generally
simplifies pointcut definitions within aspects. Third, the availabil-
ity of language workbenches that facilitate both domain-specific
grammar definition and its transformation into a general-purpose
language greatly reduces the development cost. The transforma-
tions of the DISPALs that were developed for the crosscutting con-
cerns identified in the oVirt project are available at github.com/
OpenUniversity. The application of the approach to crosscutting
concerns found in other open source projects is left for future work.

5. Conclusions

While GPALs typically improve the modularization of the soft-
ware, the logic within the aspect code remains complex and costly
to develop and maintain. Ad-hock DISPALs optimized for the
problem at hand offer a declarative and more effective alternative.
The relative ease of implementing DISPALs with modern devel-
opment tools like aspect language workbenches [3–5] makes even
one-time use of DISPALs cost-effective.

More broadly, thinking of aspect languages as disposable brings
about a more agile-like process in designing and using DSALs.
It might also suggest that future research should focus on making
GPALs more expressive (by exposing more join points, for exam-
ple) rather than making DSALs more reusable.

References

[1] J. Fabry, T. Dinkelaker, J. Noyé, and E. Tanter. A taxonomy of domain-
specific aspect languages. ACM Computing Surveys (CSUR), 47(3),
Apr. 2015.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Professional Comput-
ing. Addison-Wesley, 1995.

[3] A. Hadas and D. H. Lorenz. Demanding first-class equality for domain
specific aspect languages. In Modularity’15 Comp., pages 35–38, Fort
Collins, CO, USA, Mar. 2015. ACM Press. Position paper.

[4] A. Hadas and D. H. Lorenz. First class domain specific aspect lan-
guages. In Modularity’15 Comp., pages 29–30, Fort Collins, CO, USA,
Mar. 2015. ACM Press. Poster Session.

[5] A. Hadas and D. H. Lorenz. A language workbench for implementing
your favorite extension to AspectJ. In Modularity’15 Comp., pages 19–
20, Fort Collins, CO, USA, Mar. 2015. ACM Press. Demo Session.

[6] D. H. Lorenz. Language-oriented modularity through Awesome
DSALs: summary of invited talk. In Proceedings of the 7th AOSD

Workshop on Domain-Specific Aspects Languages (DSAL’12), pages 1–
2, Potsdam, Germany, Mar. 2012. ACM Press.

85

