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What Do We Mean by “Monitoring”

● Identifying the status of active entities
– VMs, Hosts, Storage domains

● Tracking resource consumption
– Memory, CPU, Disk space, ...

● Retrieving dynamic properties
– Client IP, Device addresses, ...
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Why is Monitoring Important

● Reflects the up-to-date status of the system
● Affects system responsiveness
● Provides data for automatic processes

– High availability
– Load balancing
– ...
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Monitoring At Scale

● The more entities to monitor, the more:
– Data to collect
– Data to process
– Data to store 
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Problem: Low Performance

● Monitoring
– Continuous operation
– Runs in the background

● In large scale deployments monitoring may 
consume a lot of resources
– Leads to various anomalies
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Our Solution

● Relatively simple changes
– No architectural change
– No major change in technology

● We noticed a significant improvement
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Outline

● Introduction to oVirt
● VMs monitoring in large scale deployments
● Improving the monitoring process
● Measurements
● Future work
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What Is oVirt?

Large scale, centralized 
management for server and 
desktop virtualization

Based on leading performance, 
scalability and security 
infrastructure technologies

Provide an open source 
alternative to vCenter/vSphere

Focus on KVM for best 
integration/performance

Focus on ease of 
use/deployment
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Architecture View
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Webadmin - Screenshot
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● Less attention to scale
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Outline

● Introduction to oVirt
● VMs monitoring in large scale deployments
● Improving the monitoring process
● Measurements
● Future work



OSS Europe, October 2017

VMs Monitoring

● Focus on monitoring of virtual machines
– Far more instances than any other entity

● This includes:
– Status
– Dynamic properties (i.e., client IP)
– Devices information
– Statistics
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VMs Monitoring Model Before v3.6

● Polling based mechanism
● Every 3 sec, for each host:

– The engine queries VMs from the database
– The engine polls information on running VMs
– The engine persists data that has changed

● Every 5th cycle includes statistics
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VMs Monitoring Model Before v3.6 (2)

● Hosts are locked during monitoring cycles
– To prevent operations on VMs in parallel

● Dynamic properties are compared via reflection
● VM statistics are not being compared

– They almost always change
● Devices are polled separately when their hash 

changes
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VMs Monitoring Model Before v3.6 (3)

● Problems in very large scale deployments
– Monitoring cycles were skipped
– High CPU consumption
– High load on the database
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Proposed Solutions

● Add a global caching layer
– To reduce interactions with the database
– Does not solve the high CPU consumption

● Distribute the monitoring process
– Addresses the high CPU consumption
– Does not reduce the load on the database

● Both solutions were too complex
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Outline

● Introduction to oVirt
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Issue #1: Too Many Writes to DB

● Static data is not monitored
● Devices rarely change
● Statistics change in each cycle
● Some of the dynamic data 

(reported data) might change
– Not often though

VM

Static Data

Dynamic Data

Devices

Statistics

Reported data (i.e., client IP) +
Not reported data (i.e., stop reason)
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Reduce Number of Writes

● Introduce @UnchangeableByVdsm
– Marks properties that are not reported

● Move frequently changed fields to the stats
– E.g., guest memory cached/buffered/free
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Separate Out Devices Monitoring 

● Devices hash was stored with the dynamic data
– Consequently, change of one device 

triggered persistency of all dynamic data
● Solution: store the devices hash separately
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Issue #2: Too Many Reads from DB

● Many connections with DB are used
● Long time is spent on quering the DB
● Even when no data (except stats) is changed!
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Eliminate Redundant Queries

● Optimize the code to skip unneeded data 
processing (including queries from DB)

● For example, skipping redundant VM numa 
nodes processing eliminated the following 
DB interactions:

Average time (micro-sec) Overall time (micro-sec)
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Memorization

● Apply memoization to repeated queries
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Smart Caching

● Cache only relevant entity’s properties
– E.g., static properties used by the monitoring

● Cache only relevant entities
– E.g., VM jobs (limited number of instances)

● Use DB for persistency, not as a bus of data
– E.g., VM statistics
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Lighter, Dedicated Queries

● Complicated queries take time
● Attempt #1: narrow down ‘vms’ view

> explain analyze select * from vms where ... 

Planning time: 2.947 ms  

Execution time: 765.774 ms

> explain analyze select * from vms_monitoring_view where ... 

Planning time: 0.387 ms

Execution time: 275.600 ms
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Lighter, Dedicated Queries (2)

● Attempt #2: query only dynamic data

> explain analyze select * from vms_monitoring_view where ... 

Planning time: 0.405 ms

Execution time: 275.850 ms

> explain analyze select * from vm_dynamic where ...

Planning time: 0.109 ms

Execution time: 2.703 ms
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Issue #3: Locks Contention 

● High contention between monitoring threads 
and those executing operations on VMs

● During the execution of VM operations, the host 
was locked to avoid monitoring the VM
– To prevent conflicts
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Split VMs and Hosts monitoring

● Replaced host-level locks with VM-level locks
– VM operations lock VMs rather than hosts
– Monitoring locks each VM running on the host

● And skips those that cannot be locked
● That reduces contention rate on operations-

intensive deployments
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Issue #4: High UNIX Load

● The overall backend load was relatively high
– Even in stable deployment

● The monitoring was an immediate suspect
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Events-Based Communication

● Replaced the polling-based backend<->host 
protocol with events-based protocol
– Based on JSON-RPC instead of XML-RPC

● Hosts send events upon VM changes
– Less monitoring cycles and data to process

● Keep polling statistics cycles
– Statistics always change
– Compensate missing events



OSS Europe, October 2017

Outline

● Introduction to oVirt
● VMs monitoring in large scale deployments
● Improving the monitoring process
● Measurements
● Future work
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Case Study

● Deployment with 1 host running 6000 VMs
– ‘Fake VMs’

● Stable deployment
– No operation is done

● Measured 1 hour of uptime
● Compared versions 3.6 and 4.1

– Both used events
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CPU

3.6

4.1
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CPU (2)

● Total CPU time reduced from 2297s to 1789s 
(78%) 

● Significantly less time in monitoring code
– Processing time reduced from 896s to 687s
– Persistence time reduced from 546s to 114s 
– Overall, 814s instead of 1451s (56%)
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Database – Hot Spots

            3.6                                  4.1
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Database – Executed Statements

3.6

4.1
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Database

● The time to query all VMs reduced from 
3539ms to 909msec (26%)

● The time to save dynamic data in 3.6 was 101 
sec (6%, 544 micro-sec on average), 0 in 4.1 
– Similar results for other properties

● In overall, less use of the database
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Memory Consumption

3.6

4.1
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M
em

ory
● Surprisingly, less memory was consumed in 4.1

– In 3.6 it gets to ~1.45GB
– In 4.1 it gets to ~1.2GB

● Probably because of caching done by postgres
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Future Work

● Separate out statistics monitoring
● Apply similar principles to host monitoring
● Add caching of more entities

– Specifically, VM dynamic data (e.g., status)
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Conclusions

● Significant improvement shown in a case study
– All changes are available in version 4.1

● This required deep knowledge of the platform
– No shortcuts in the form of generic solutions
– No major technological change
– No architectural change
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THANK YOU!

http://www.ovirt.org
ahadas@redhat.com
ahadas@irc.oftc.net#ovirt
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