
OSS Europe, October 2017

Monitoring At Scale:

Arik Hadas
Principal Software Engineer
Red Hat
23/10/17

What was Recently Done and
What’s Next in oVirt

OSS Europe, October 2017

What Do We Mean by “Monitoring”

● Identifying the status of active entities
– VMs, Hosts, Storage domains

● Tracking resource consumption
– Memory, CPU, Disk space, ...

● Retrieving dynamic properties
– Client IP, Device addresses, ...

OSS Europe, October 2017

Why is Monitoring Important

● Reflects the up-to-date status of the system
● Affects system responsiveness
● Provides data for automatic processes

– High availability
– Load balancing
– ...

OSS Europe, October 2017

Monitoring At Scale

● The more entities to monitor, the more:
– Data to collect
– Data to process
– Data to store

OSS Europe, October 2017

Problem: Low Performance

● Monitoring
– Continuous operation
– Runs in the background

● In large scale deployments monitoring may
consume a lot of resources
– Leads to various anomalies

OSS Europe, October 2017

Our Solution

● Relatively simple changes
– No architectural change
– No major change in technology

● We noticed a significant improvement

OSS Europe, October 2017

Outline

● Introduction to oVirt
● VMs monitoring in large scale deployments
● Improving the monitoring process
● Measurements
● Future work

OSS Europe, October 2017

What Is oVirt?

Large scale, centralized
management for server and
desktop virtualization

Based on leading performance,
scalability and security
infrastructure technologies

Provide an open source
alternative to vCenter/vSphere

Focus on KVM for best
integration/performance

Focus on ease of
use/deployment

OSS Europe, October 2017

Architecture View

OSS Europe, October 2017

Webadmin - Screenshot

OSS Europe, October 2017

Feature-Rich Platform

Hosted
Engine

Hostdev
Passthrough

Live
Snapshots

VM
Affinity

VM
Migration

Live
Storage

Migration

Glance
Integration Multi-Level

Administration

Cloud-init
Integration

Gluster
Support

VM High
Availability

Live
Merge

V2V

Hot Plug
Memory

Upload
Image

Nvidia
GPU

High
Performance VMs

Template
Versions

Direct
LUNs

Load
Balancing

Hot Plug
CPU

Foreman
Integration

Neutron
Integration

Backup
API

VM
Leases

Port
Mirroring

Network
Filtering

VM
Pools

OSS Europe, October 2017

● Less attention to scale

Feature-Rich Platform

Hosted
Engine

Hostdev
Passthrough

Live
Snapshots

VM
Affinity

VM
Migration

Live
Storage

Migration

Neutron
Integration

Glance
Integration Multi-Level

Administration

Cloud-init
Integration

Gluster
Support

VM High
Availability

Live
Merge

V2V
Backup

API

Hot Plug
Memory

Upload
Image

Nvidia
GPU

High
Performance VMs

Template
Versions

VM
Leases

Port
Mirroring

Direct
LUNs

Network
Filtering

Load
Balancing

Hot Plug
CPU

Foreman
Integration

VM
Pools

OSS Europe, October 2017

Outline

● Introduction to oVirt
● VMs monitoring in large scale deployments
● Improving the monitoring process
● Measurements
● Future work

OSS Europe, October 2017

VMs Monitoring

● Focus on monitoring of virtual machines
– Far more instances than any other entity

● This includes:
– Status
– Dynamic properties (i.e., client IP)
– Devices information
– Statistics

OSS Europe, October 2017

VMs Monitoring Model Before v3.6

● Polling based mechanism
● Every 3 sec, for each host:

– The engine queries VMs from the database
– The engine polls information on running VMs
– The engine persists data that has changed

● Every 5th cycle includes statistics

OSS Europe, October 2017

VMs Monitoring Model Before v3.6 (2)

● Hosts are locked during monitoring cycles
– To prevent operations on VMs in parallel

● Dynamic properties are compared via reflection
● VM statistics are not being compared

– They almost always change
● Devices are polled separately when their hash

changes

OSS Europe, October 2017

VMs Monitoring Model Before v3.6 (3)

● Problems in very large scale deployments
– Monitoring cycles were skipped
– High CPU consumption
– High load on the database

OSS Europe, October 2017

Proposed Solutions

● Add a global caching layer
– To reduce interactions with the database
– Does not solve the high CPU consumption

● Distribute the monitoring process
– Addresses the high CPU consumption
– Does not reduce the load on the database

● Both solutions were too complex

OSS Europe, October 2017

Outline

● Introduction to oVirt
● VMs monitoring in large scale deployments
● Improving the monitoring process
● Measurements
● Future work

OSS Europe, October 2017

Issue #1: Too Many Writes to DB

● Static data is not monitored
● Devices rarely change
● Statistics change in each cycle
● Some of the dynamic data

(reported data) might change
– Not often though

VM

Static Data

Dynamic Data

Devices

Statistics

Reported data (i.e., client IP) +
Not reported data (i.e., stop reason)

OSS Europe, October 2017

Reduce Number of Writes

● Introduce @UnchangeableByVdsm
– Marks properties that are not reported

● Move frequently changed fields to the stats
– E.g., guest memory cached/buffered/free

OSS Europe, October 2017

Separate Out Devices Monitoring

● Devices hash was stored with the dynamic data
– Consequently, change of one device

triggered persistency of all dynamic data
● Solution: store the devices hash separately

OSS Europe, October 2017

Issue #2: Too Many Reads from DB

● Many connections with DB are used
● Long time is spent on quering the DB
● Even when no data (except stats) is changed!

OSS Europe, October 2017

Eliminate Redundant Queries

● Optimize the code to skip unneeded data
processing (including queries from DB)

● For example, skipping redundant VM numa
nodes processing eliminated the following
DB interactions:

Average time (micro-sec) Overall time (micro-sec)

OSS Europe, October 2017

Memorization

● Apply memoization to repeated queries

OSS Europe, October 2017

Smart Caching

● Cache only relevant entity’s properties
– E.g., static properties used by the monitoring

● Cache only relevant entities
– E.g., VM jobs (limited number of instances)

● Use DB for persistency, not as a bus of data
– E.g., VM statistics

OSS Europe, October 2017

Lighter, Dedicated Queries

● Complicated queries take time
● Attempt #1: narrow down ‘vms’ view

> explain analyze select * from vms where ...

Planning time: 2.947 ms

Execution time: 765.774 ms

> explain analyze select * from vms_monitoring_view where ...

Planning time: 0.387 ms

Execution time: 275.600 ms

OSS Europe, October 2017

Lighter, Dedicated Queries (2)

● Attempt #2: query only dynamic data

> explain analyze select * from vms_monitoring_view where ...

Planning time: 0.405 ms

Execution time: 275.850 ms

> explain analyze select * from vm_dynamic where ...

Planning time: 0.109 ms

Execution time: 2.703 ms

OSS Europe, October 2017

Issue #3: Locks Contention

● High contention between monitoring threads
and those executing operations on VMs

● During the execution of VM operations, the host
was locked to avoid monitoring the VM
– To prevent conflicts

OSS Europe, October 2017

Split VMs and Hosts monitoring

● Replaced host-level locks with VM-level locks
– VM operations lock VMs rather than hosts
– Monitoring locks each VM running on the host

● And skips those that cannot be locked
● That reduces contention rate on operations-

intensive deployments

OSS Europe, October 2017

Issue #4: High UNIX Load

● The overall backend load was relatively high
– Even in stable deployment

● The monitoring was an immediate suspect

OSS Europe, October 2017

Events-Based Communication

● Replaced the polling-based backend<->host
protocol with events-based protocol
– Based on JSON-RPC instead of XML-RPC

● Hosts send events upon VM changes
– Less monitoring cycles and data to process

● Keep polling statistics cycles
– Statistics always change
– Compensate missing events

OSS Europe, October 2017

Outline

● Introduction to oVirt
● VMs monitoring in large scale deployments
● Improving the monitoring process
● Measurements
● Future work

OSS Europe, October 2017

Case Study

● Deployment with 1 host running 6000 VMs
– ‘Fake VMs’

● Stable deployment
– No operation is done

● Measured 1 hour of uptime
● Compared versions 3.6 and 4.1

– Both used events

OSS Europe, October 2017

CPU

3.6

4.1

OSS Europe, October 2017

CPU (2)

● Total CPU time reduced from 2297s to 1789s
(78%)

● Significantly less time in monitoring code
– Processing time reduced from 896s to 687s
– Persistence time reduced from 546s to 114s
– Overall, 814s instead of 1451s (56%)

OSS Europe, October 2017

Database – Hot Spots

 3.6 4.1

OSS Europe, October 2017

Database – Executed Statements

3.6

4.1

OSS Europe, October 2017

Database

● The time to query all VMs reduced from
3539ms to 909msec (26%)

● The time to save dynamic data in 3.6 was 101
sec (6%, 544 micro-sec on average), 0 in 4.1
– Similar results for other properties

● In overall, less use of the database

OSS Europe, October 2017

Memory Consumption

3.6

4.1

OSS Europe, October 2017

M
em

ory
● Surprisingly, less memory was consumed in 4.1

– In 3.6 it gets to ~1.45GB
– In 4.1 it gets to ~1.2GB

● Probably because of caching done by postgres

OSS Europe, October 2017

Outline

● Introduction to oVirt
● VMs monitoring in large scale deployments
● Improving the monitoring process
● Measurements
● Future work

OSS Europe, October 2017

Future Work

● Separate out statistics monitoring
● Apply similar principles to host monitoring
● Add caching of more entities

– Specifically, VM dynamic data (e.g., status)

OSS Europe, October 2017

Conclusions

● Significant improvement shown in a case study
– All changes are available in version 4.1

● This required deep knowledge of the platform
– No shortcuts in the form of generic solutions
– No major technological change
– No architectural change

OSS Europe, October 2017

THANK YOU!

http://www.ovirt.org
ahadas@redhat.com
ahadas@irc.oftc.net#ovirt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 46
	Slide 47

