
Experiencing with Language Oriented Modularity
Arik Hadas and David H. Lorenz

Open University of Israel

DSAL

Synchronization

Auditing

Permissions

Language Oriented Modularity (LOM), taking after Language Oriented Programming (LOP), is a
programming methodology that involves the development and use of Domain Specific Aspect
Languages (DSALs) on-demand during the software modularization process. A DSAL is a
programming language that is both domain-specific and aspect-oriented. It provides not only
domain-specific abstractions and notations like an ordinary Domain Specific Language (DSL) does,
but also a modularization mechanism for the separation of domain-specific crosscutting concerns.

Approach: Transforming DSAL code to annotated AspectJ code using a Language Workbench

New crosscutting feature

in the muCommander

open source file manager

Code scattering

Aspect solution for a missing feature of

auditing file operations written in a DSAL

DSAL with easy-to-use
syntax for auditing Syntax- errors

Syntax Highlighting

AJDT Markers

Auto-Completion

AJDT Markers

Code in the common root of all file operations

Code tangling

Tangled code was separated
out from the FileJob class
(more than 12% of its LOC)

Scattered code was
separated out (which
for some commands
exceed 25% of their
overall LOC!)

Separating

crosscutting concerns

in the oVirt open source

virtualization platform

This research was supported
in part by the Israel Science
Foundation (ISF) under grant
No. 1440/14.

Comparison between our

implementation of COOL and

the one in the AWESOME

composition framework

Language Oriented Modularity:
From Theory to Practice

Research track, Wed, 10:45, D0.07

Coordinator for a bounded stack

- Significantly less code

- Simpler (High-level programming with

AspectJ instead of bytecode manipulation)

- Implementation done completely using

the Spoofax language workbench

Aspect in AspectJ that uses the stack

Resolution of external variables
inside the coordinator

Hides join points associated with this type to resolve multi-DSAL foreign advising conflicts

Preserves the source location of the advice at the DSAL code to achieve compatibility with AJDT

Our @Hide annotations preserve
the join point “fingerprint” of the
aspect code

