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Language Oriented Modularity (LOM), taking after Language Oriented Programming (LOP), is a 
programming methodology that involves the development and use of Domain Specific Aspect 
Languages (DSALs) on-demand during the software modularization process. A DSAL is a 
programming language that is both domain-specific and aspect-oriented. It provides not only 
domain-specific abstractions and notations like an ordinary Domain Specific Language (DSL) does, 
but also a modularization mechanism for the separation of domain-specific crosscutting concerns. 

Approach: Transforming DSAL code to annotated AspectJ code using a Language Workbench 
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Code in the common root of all file operations 

Code tangling 

Tangled code was separated 
out from the FileJob class 
(more than 12% of its  LOC) 

Scattered code was 
separated out (which 
for some commands 
exceed 25% of their 
overall LOC!) 

Separating             

crosscutting concerns     

in the oVirt open source 

virtualization platform 
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Comparison between our  

implementation of COOL and 

the one in the AWESOME   

composition framework 
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Coordinator for a bounded stack 

- Significantly less code 

- Simpler (High-level programming with 

AspectJ instead of bytecode manipulation) 

- Implementation done completely using 

the Spoofax language workbench 

Aspect in AspectJ that uses the stack 

Resolution of external variables 
inside the coordinator 

Hides join points associated with this type to resolve multi-DSAL foreign advising conflicts 

Preserves the source location of the advice at the DSAL code to achieve compatibility with AJDT 

Our @Hide annotations preserve 
the join point “fingerprint” of the     
aspect code 


