
Example: SDF for CJP

Research in domain-specific aspect languages suffers from the deterioration of the Aspect Bench Compiler (abc). We
present an alternative language-oriented programmer’s workbench for developing extensions to AspectJ. Much like the
abc, the workbench allows researchers to implement and evaluate new extensions. In contrast to abc, however, it also
provides IDE support, compatibility with AspectJ 1.7.4 and Java 7, and support for programming in multiple extensions.
For validation we implemented the workbench by integrating Spoofax and AWESOME, and used it to create complex third-
party extensions, including COOL, explicit join points (EJP), and closure join points (CJP).

A Language Workbench for Creating
Production-ready Extensions to AspectJ

Arik Hadas
Open University of Israel

Advisor: David H. Lorenz

This research was supported
in part by the Israel Science
Foundation (ISF) under grant
No. 1440/14.

Language Workbench (Spoofax)

Example: Implementation of CJP

package research;
public class HelloWorld {
 public static void main(String[] args) {
 exhibit say(String message) {
 System.out.println("Hello, " + message);
 }("World");
 }
}

package research;
aspect Impact {
 joinpoint void say(String message);
 after say(String message) {
 System.out.println(
 "It did a " + message + " of good.");
 }
}

Composition Framework (AWESOME)

Code Transformation

Transformed Code

Running

Compilation and Weaving
public void preweave(List<ResolvedType> types) { ... }
List<BcelShadow> around(MultiMechanism mm, LazyClassGen clazz):
 reifyClass(mm, clazz) { ... }
public List<IEffect> match(BcelShadow shadow) { ... }
public List<IEffect> order(BcelShadow shadow, List<IEffect> effects) { ... }
void around(MultiMechanism mm, List effects, BcelShadow shadow):
 execution(void MultiMechanism.mix(List, BcelShadow)) { ... }

Eclipse Plugin for CJP:
error checking,

syntax highlighting
and auto-completion

Producing executable
woven code

Highlights

• Workbench, not a compiler

 Editing tools for creating DSALs and for programming with DSALs

 Ability for define the weaving semantics required for DSALs

 Compatibility with development tools for AOP

 Code transformation is a responsibility of the back-end, not the

front-end standalone compilation of DSALs

 Context-aware & source location preserving code transformations

• Combines the benefits of abc, AWESOME, and
Spoofax, avoiding their limitations

Validation

• Open source implementation

• Plugins for well-known third-part extensions

 COOL, EJP, CJP

 Including features that were omitted in original prototypes

• Weaving mechanism in

AWESOME for CJP

• The weaving model was
extended with a
preweaving phase

WorkbenchSpoofaxAWESOMEabc

Tools for custom syntax definition

Extensible Java/AspectJ syntax

Tools for code transformation

Editing tools for end-programmers

Ability to define the weaving
semantics required for DSAL

Works with recent version of AspectJ

Compliance with AJDT

module languages/closures/Main

imports
 languages/java-15/Main
 languages/aspectj/ajc/Main

exports
 sorts JoinpointDeclaration
 context-free syntax
 "exhibit" MethodName "(" {FormalParam ","}* ")" Block "("
 {Expr ","}* ")" -> Expr {cons("ClosureJoinpoints")}
 "exhibit" MethodName Block ->
 Expr {cons("ShortClosureJoinpoints")}

 JoinpointDeclaration -> AspectBodyDec
 "joinpoint" ResultType Id "(" {FormalParam ","}* ")" Throws? ";"
 -> JoinpointDeclaration{cons("JoinpointDeclaration")}
 (Anno | MethodMod)* CJPAdviceSpec Throws? Block ->
 AdviceDec {cons("CJPAdvice")}
 "before" Id "(" {FormalParam ","}* ")" ->
 CJPAdviceSpec {cons("CJPBefore")}
 "after" Id "(" {FormalParam ","}* ")" ->
 CJPAdviceSpec {cons("CJPAfter")}
 "after" Id "(" {FormalParam ","}* ")" "returning" CJPSingleParam?
 -> CJPAdviceSpec {cons("CJPAfterReturning")}
 "after" Id "(" {FormalParam ","}* ")" "throwing" CJPSingleParam?
 -> CJPAdviceSpec {cons("CJPAfterThrowing")}
 "(" FormalParam? ")" -> CJPSingleParam {cons("CJPSingleParam")}
 ResultType "around" Id "(" {FormalParam ","}* ")" ->
 CJPAdviceSpec {cons("CJPAround")}

 lexical syntax
 "exhibit" -> Keyword
 "joinpoint" -> PseudoKeyword

package research;
import closures.runtime.*;
import org.aspectj.lang.annotation.*;
import org.aspectj.lang.*;
public class HelloWorld {
 public static void main(String[] args){
 new JoinpointWrapper(){
 @Closure
 @SourceLocation(...)
 public void say(String message){
 System.out.println("Hello, " + message);
 }
 }.say("World");
 }
}

$ java –cp woven.jar:awesome_runtime.jar research.HelloWorld
Hello, World

It did a World of good.

package research;
import closures.runtime.*;
import org.aspectj.lang.annotation.*;
import org.aspectj.lang.*;
aspect Impact {
 private static @Joinpoint void say(String message) {
 throw new UnsupportedOperationException();
 }
 @After("call(@Closure * say(String)) &&args(message)")
 @JoinpointSignature(args = {String.class}, name = "say")
 public void say483096566(String message,
 JoinPointthisJoinPoint) {
 System.out.println("It did a " + message + " of good.");
 }
}

Metadata
for weaving

closure-to-java-impl=
 ?ShortClosureJoinpoints(<or(?MethodName(Id(jp_name)), ?MethodName(_, Id(jp_name)))>, block);
 !Invoke(
 Method(
 NewInstance(
 None()
 , ClassOrInterfaceType(TypeName(Id("JoinpointWrapper")), None())
 , []
 , Some(
 ClassBody(
 [MethodDec(
 MethodDecHead(
 [MarkerAnno(TypeName(Id("Closure"))), Public()]
 , None(), Void(), Id(jp_name), [], None())
 , block)])))
 , None()
 , Id(jp_name))
 , [])

• Stratego definition for
transforming a closure-call
to calling a method with a
@Closure annotation

• Transformation plugin in
AWESOME for CJP

