
Validation
The approach was applied to
modularize scattered and tangled
code found in the oVirt project.
Our approach leverages DSL and
GPAL development tools in easing
the development and use of DSALs.

References
• Application-specific language-

oriented modularity: A case study of
the oVirt project. In MASS'16.

• Toward disposable domain-specific
aspect languages. In FOAL'16.

• Toward practical language oriented
modularity. In LaMOD'16.

Abstract – Language Oriented Modularity (LOM) is a methodology that is based on Language Oriented Programming (LOP)
but applied to Domain-Specific Aspect Languages (DSALs) rather than Domain-Specific Languages (DSLs). LOM involves the
construction, composition, and use of DSALs on-demand during the software modularization process, in order to separate
out crosscutting concerns (CCC). However, LOM is underutilized and often not used at all in modern projects. The goal of
this research is to improve the applicability of LOM for resolving crosscutting concerns in real world projects.

.

Language Oriented Modularity: From Theory to Practice
Arik Hadas

Open University of Israel

Advisor: David H. Lorenz
This research was supported
in part by the Israel Science
Foundation (ISF) under grant
No. 1440/14.

In Theory – LOM Improves Modularity

Language oriented modularity (LOM) is a programming
methodology that promotes construction and composition of
Domain Specific Aspect Languages (DSALs) in order to
separate out crosscutting concerns (CCC).

DSAL

Contribution – Practical LOM

Significantly reduce the cost of implementing and using
DSALs that are “reducible” to a general purpose
aspect-oriented programming language.

Transformation

In Practice – LOM is Underutilized

Need to implement the weaving semantics per DSAL
without supportive development tools for DSALs.

Weaver
Plugin

public privileged aspect Logs {
@BridgedSourceLocation(line=1,

file="/bll/src/main/java/org/ovirt/engine/core/bll/ovirt.audit",
module="ovirt.audit")

AuditLogType around(org.ovirt.engine.core.bll.MigrateVmCommand command):
execution(* getAuditLogTypeValue()) && this(command) {
if (command.getSucceeded() && command.isReturnValueUp())

return AuditLogType.VM_MIGRATION_DONE;
if (command.getSucceeded() && command.isInternalExecution())

return AuditLogType.VM_MIGRATION_START_SYSTEM_INITIATED;
if (command.getSucceeded())

return AuditLogType.VM_MIGRATION_START;
if (!command.getSucceeded() && command.isHostInPrepareForMaintenance())

return AuditLogType.VM_MIGRATION_FAILED_DURING_MOVE_TO_MAINTENANCE;
if (!command.getSucceeded())

return AuditLogType.VM_MIGRATION_FAILED;
return AuditLogType.UNASSIGNED;

}
@BridgedSourceLocation(line=14,

file="/bll/src/main/java/org/ovirt/engine/core/bll/ovirt.audit",
module="ovirt.audit")

AuditLogType around(org.ovirt.engine.core.bll.storage.export.ExportVmTemplateCommand
command):

execution(* getAuditLogTypeValue()) && this(command) {
if (command.getSucceeded() && command.getActionState() == CommandActionState.EXECUTE)

return AuditLogType.IMPORTEXPORT_STARTING_EXPORT_TEMPLATE;
if (!command.getSucceeded() && command.getActionState() == CommandActionState.EXECUTE)

return AuditLogType.IMPORTEXPORT_EXPORT_TEMPLATE_FAILED;
if (command.getSucceeded()

&& command.getActionState() == CommandActionState.END_SUCCESS)
return AuditLogType.IMPORTEXPORT_EXPORT_TEMPLATE;

if (!command.getSucceeded()
&& command.getActionState() == CommandActionState.END_SUCCESS)

return AuditLogType.IMPORTEXPORT_EXPORT_TEMPLATE_FAILED;
return proceed(command);

}
@BridgedSourceLocation(line=25,

file="/bll/src/main/java/org/ovirt/engine/core/bll/ovirt.audit",
module="ovirt.audit")

AuditLogType around(org.ovirt.engine.core.bll.storage.disk.AddDiskCommand command):
execution(* getAuditLogTypeValue()) && this(command) {
… skipped …

}
}

Xcutting Problem LOM Solution Approach

Transforming DSAL code
to a GPAL aspect

Synchronization

Auditing

Permissions

DSAL with easy-to-use
syntax for auditing

DSAL with easy-to-use syntax
for synchronization

Syntax Highlighting

AJDT Markers

Syntax-errors

Auto-Completion

Implementing code transformation
using a Language Workbench

Generate IDE Support
for programming with
the DSAL

Generated aspect
for auditing

Extend AspectJ to serve as
a kernel language for LOM

Practical LOMLOMLOP
DSALs reducible

to a GPALDSALsDSLsLanguages

Kernel
weaver

Per-DSAL
weaver

Host
compilerCompiler

Language
Workbench

None for
weaving

semantics

Language
Workbench

IDE Tools for
Language Dev.

Language
WorkbenchManualLanguage

Workbench
IDE Tools for

Language Use
AJDTPer-DSALN/AAspect Dev. Tools

	Language Oriented Modularity: From Theory to Practice �Arik Hadas�Open University of Israel

